
Copyright  1999 Springer Verlag.
Reprinted from (Pattern Analysis and Applications, M. Egmont-Petersen, E. Pelikan.
"Detection of bone tumours in radiographs using neural networks," Vol. 2, No. 2, pp.
172-183, 1999, Copyright Springer Verlag), with permission from Springer Verlag.

This material is posted here with permission of Springer Verlag. Single copies of this
article can be downloaded and printed for the reader’s personal research and study.

For more information, see the Homepage of the journal Pattern Analysis and
Applications:

http://www.dcs.ex.ac.uk/paa
or Springer Verlag

http://www.springer.de

Comments and questions can be sent to: michael@cs.uu.nl



Pattern Analysis & Applications (1999)2:172–183
 1999 Springer-Verlag London Limited

Detection of Bone Tumours in Radiographic
Images using Neural Networks

M. Egmont-Petersen1 and E. Pelikan2

1Division of Image Processing, Department of Radiology, Leiden University Medical Centre, Leiden, The
Netherlands; 2Scientific Technical Department, Philips Medical Systems, Hamburg, Germany

Abstract: We develop an approach for segmenting radiographic images of focal bone lesions possibly caused by bone tumour. A neural
network is used to classify individual pixels by a convolution operation based on a feature vector. We design eight features that characterise
the local texture in the neighbourhood of a pixel. Four of the features are based on co-occurrence matrices computed from the
neighbourhood. The true class label of the pixels in the radiographs are obtained from annotations made by an experienced radiologist.
Neural networks and self-organising feature maps are trained to perform the segmentation task. The experiments confirm the feasibility of
using a feature-based neural network for finding pathologic bone changes in radiographic images. An analysis of the eight features indicates
that the presence of edges and transitions, the complexity of the texture, as well as the amount of high frequencies in the texture, are
the main features discriminating (soft) tissue from pathologic bone, the two classes most likely to be confused.
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1. INTRODUCTION

Neural networks have been developed for various classi-
fication tasks in image processing and computer vision.
Among others, neural networks were trained to diagnose
malignant melanoma [1] and to perform optical character
recognition [2–6]. An optical network has been built for
face recognition [7], a (hardware) RAM neural network has
been trained for classification of danger labels [8], and neural
networks have been trained for recognition of marker points
in remote sensing images [9,10].

In our line of research, we are developing an approach for
automatically screening radiographs for focal bone lesions, in
particular bone tumours. These tumours constitute less than
one percent of all tumours in Germany [11]. Because of
their low incidence, a radiologist in a nonspecialised clinic
will typically see a radiograph with indications of a bone
tumour two or three times in his/her career [12]. Until now,
relatively little research has been done to automatically
locate morphological structures in radiographs of bone
tumours (see Sörgel et al [13]). Therefore, we aim at
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developing an approach that can be used for screening
radiographs for pathologic bone changes that are caused by
bone tumours or other bone lesions with a similar appear-
ance.

In this paper, our objective is to investigate the feasibility
of automatically identifying pathologic bone changes in
radiographs but not to discriminate between the several
types of bone tumours. The main feature discriminating
normal from pathologic bone is the local textural appear-
ance. We therefore developed a segmentation approach
based on local features that are invariant to translation and
rotation. The image is segmented by two statistical classifi-
ers – a feed-forward neural network and a self-organising
feature map – into four categories. The classifiers obtain as
input a set of features that characterises textural properties
of a local neighbourhood around a pixel.

This paper is organised as follows. First, the medical
background is briefly discussed. In Section 3, we compare
different types of classifiers and motivate why we chose the
neural network and the self-organising feature map for the
segmentation task. We also introduce the translation- and
rotation-invariant features. It is then described how the
neural network and the self-organising feature map are
trained to perform the segmentation task. Subsequently, the
results are presented and discussed.
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2. MEDICAL BACKGROUND

Once a focal bone lesion is detected, highly specialised
radiologists establish the differential diagnosis by looking for
the presence and absence of several so-called morphological
structures. In the 1960s, Lodwick [14] made a taxonomy of
focal bone lesions (including bone tumours), and character-
ised different morphological structures which indicate patho-
logic bone changes. Since then, others have extended the
framework proposed by Lodwick [15,16]. Besides age, some
questions address the location of the lesion and the type of
bone. Based on this information, the specialised radiologist
establishes the correct differential diagnosis among the 42
possibilities. However, to a radiologist who is not specialised
in the diagnosis of bone tumours, the morphological struc-
tures associated with bone tumours appear as unexpected
patterns – abnormal textures – in the radiograph. Moreover,
nonspecialised radiologists are normally unaware of the
relation between age, the appearance of the unexpected
textural patterns and the relation with specific bone tumours.
As we focus on the screening application, our task is to aid
the nonspecialised radiologist in locating pathologic bone
changes. More specifically, we want to segment the pixels
in a radiograph into one of the four categories: healthy
bone, soft tissue, pathologic bone and image background. In our
application, a segmentation approach is needed that is
invariant to changes in: translation, rotation and image
contrast. Variations in scale are small in our image material.

3. SEGMENTATION APPROACH

Define an image as a two-dimensional function1 f(x,y) of the
coordinates x P 1,. . .,xmax and y P 1,. . .,ymax. Segmentation
entails partitioning an image into regions that are coherent
with respect to some criterion. Image segmentation can also
be seen as a classification task in which each pixel is
assigned to one among a number of categories. We decided
to train a statistical classifier to perform the segmentation
task. Two important choices needed to be made: which type
of statistical classifier to use and whether to apply the
classifier directly on the image data or on a set of derived
features.

3.1. Choosing a Classifier

Classification entails assigning a class label to an object
(pixel) based on an n-dimensional feature vector e. A
statistical classifier implements a mapping from the n-dimen-
sional feature space to the c-dimensional probability class
space

h: e P 5n → z P (0,1)c (1)

Let p(euvj) denote the n-dimensional class-conditional Prob-

1 Henceforward, a capital letter X denotes a matrix, a bold letter y a column
vector. xk,i denotes the kth element in column i in X. The ith element in
vector y is denoted by yi. A function is in the main text rendered by f(·).
Finally, p(x) denotes the probability density function of variable x.

ability Density Function (PDF) of the n features for class j,
j = 1,. . .,c. In general, classifiers partition the feature space
into disjoint regions Rj, j = 1,. . .,c.

A variety of statistical pattern classifiers exist: the Baye-
sian (minimal error rate) classifier, the k-nearest neighbour
classifier, linear and quadratic discriminants, feed-forward
neural networks (MLP), the self-organising feature map
(SOM), induction trees, etc. In choosing among these classi-
fiers for our application, the error rate obtained is solely one
among several criteria that should be taken into account. It
is important to make the best trade-off between error rate,
the computational cost associated with building and applying
the classifier, how much computer memory it requires as
well as the transparency of the classifier to developers and
end users (for a discussion see Sklansky and Vriesenga [10]).
The criteria are listed in the top row of Table 1.

Although the Bayesian classifier guarantees the minimal
error rate, one needs to know the type of distribution of
the features to build it. A possible approximation to the
class-conditional densities of the features is to use kernel
functions [17]. When the class-conditional PDFs of the
features can be characterised by normal densities, however,
linear or quadratic discriminants will result in Bayes classifi-
ers [18]. The asymptotic error rate of the nonparametric k-
nearest neighbour classifier is bounded by about twice the
Bayes error rate [19]. For feed-forward neural networks with
one hidden layer, it has been proven that they can
implement any discriminant when provided with enough
hidden nodes [20,21]. When the size of the training set
goes to infinity, the output of a network with a sufficient
number of hidden nodes approaches the Bayesian posterior
probabilities [22]. For the self-organising feature map, it has
been shown that the weight vectors connecting the inputs
with the nodes in the map specify the centres of clusters
that cover the input space and the point density function
of these centres tends to approximate the probability density
function of the feature space [23]. Also the induction trees
built with NPPA [24] or ID3 [25] are capable of modelling
any discriminant when no limits are posed on the number
of branches, i.e. the depth of the trees.

Building a Bayesian classifier with kernel densities requires
much memory and is moderately complex to use. Relatively
little computation and computer memory are needed to
build, use and store linear and quadratic discriminants. The
k-nearest neighbour classifier is simple to build from a train-
ing set but requires immense computation and a large mem-
ory when used for classifying cases (although algorithms that
speed up the search process have been developed). Building
feed-forward neural networks and self-organising feature
maps, on the other hand, is computationally complex
because convergence of the learning algorithms is often
slow. However, once optimally tuned, applying these classi-
fiers requires little computation and computer memory.
Induction algorithms like NPPA and ID3, by virtue of their
recursive structure, require little computation in use. Because
induction trees partition the feature space along the n axes
that span the feature space, such trees may contain many
branches which again requires much computer memory.
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Table 1. The criteria along which the different statistical classifiers are compared

Classifier Error rate Comp. compl. Comp. complexity Required memory Transparency
(training) (use) (use)

Bayes (kernels) Asymp. minimal Small Moderate Very large memory Not transparent
Lin./quad. Minimal (Gauss. Small Very small Small memory Transparent
discriminant distrib.)
k-near. neigh Two times minimal Very small Very complex Very large memory Transparent
MLP Asym. minimal High Small Small memory Not transparent
SOM Unknown High Small Small memory Not transparent
Induc. trees Unknown Moderate Small Small to large Transparent (but

memory (probl. complex, probl.
dep.) dep.)

As with respect to transparency, a Bayesian classifier based
on kernels is complex to comprehend. The functioning of
linear and quadratic discriminants, on the other hand, is
well-understood. Also, the k-nearest neighbour classifier is
transparent in the sense that the k nearest training examples
in relation to a vector can be recalled upon request and
displayed to the user. The feed-forward neural network,
however, is often regarded as a black box [26,27], albeit
techniques exist which can map the net to a more trans-
parent classifier [27,28] as well as techniques that character-
ise certain properties of the network explicitly, e.g. by
estimating the contribution of the input nodes to the classi-
fication of a case [29], computing a quality profile of a
neural network [30] or estimating the importance of the
features used by the neural network [31].

In digital image processing, a high performance and a fast
computation when applying the classifier are both mandatory
requirements. Our segmentation task is complex and a clas-
sifier that can approximate any discriminant function is
needed. Moreover, since trained neural networks require
only little memory and are efficient in use, we chose to
train feed-forward neural networks to perform the segmen-
tation task. We also wanted to investigate whether an
unsupervised clustering algorithm would result in the same
segmentation result as the (supervised) feed-forward neural
network. Therefore, a self-organising feature map was trained
and each node in the map associated with a particular class
after training had terminated.

3.2. Feature Space

After having chosen the classifiers that will be used, we
need to specify which information should be provided as
input. The morphological structures we seek are small com-
pared to the size of a whole radiograph. The smallest mor-
phological structure that had been demarcated by the
involved radiologist had an area of about 25 pixels. As
(local) texture is the most important salient feature dis-
tinguishing pathologic bone from the other three classes,
segmentation could, for instance, be performed by convolv-
ing the radiographic image with a neural network that
obtains as input the intensities of a quadratic window with,
for example, 5 × 5 pixels. As in our application the network

should be invariant to rotation, the training images would
then have to been rotated by a randomly chosen multiple
of u degrees (e.g. u = 360/12). Such a rotation inevitably
entails bi-linear interpolation and the resulting texture
becomes smoothed. Consequently, the amount of high fre-
quencies with a possible discriminative power is reduced
which might lead to a decrease in performance. To avoid
this problem, we experimented with different rotation-
invariant features that were provided as input to the neural
network in the form of a feature vector e(x,y).

It is important to choose features that result in a good
discrimination between the four classes. In the following,
we define eight features that characterise the texture of
a small neighbourhood around a pixel [32]. Each feature
o P {1,. . .,8} can be seen as an operation on the original
image, O(f(x,y)). More textural features such as gradient
and edge operators had been evaluated in preliminary experi-
ments [33–35]. However, the best performance was obtained
by combining the features presented here.

The radiographs we work with vary in contrast and bright-
ness. To provide the neural network with an absolute indi-
cation of the grey level of a pixel, we included the feature
O1(f(x, y)) which performs a histogram equalisation of the
image

h = g[f(x,y)], g[i] = 1 O(x′,y′)

f(x′,y′) # i

O
(x′,y′)

f(x′,y′)
2552 (2)

with g denoting the new look-up table. h is the only global
feature provided to the classifier. Two other features that
contributed to the discrimination between the four classes
in earlier experiments [34] were O2 unsharp masking (7 × 7
kernel) and O3 a median filter (7 × 7 kernel). Unsharp
masking is defined as

n = f(x,y) + {f(x,y) − m[f,(x,y)]} (3)

with m[f,(x,y)] denoting the median filter applied on a 7 × 7
window from f and (x,y) the coordinates of its central pixel.
Unsharp masking amplifies high frequencies in the image.
It accentuates the (diverse) trabecula structures of healthy
and pathologic bone. The third feature O3 is the median
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filter m[f,(x,y)] which passes low frequencies, i.e. the median
grey level.

In the 1970s, Haralick [36] introduced the concept of a
co-occurrence matrix to characterise and discriminate differ-
ent types of texture. Earlier experiments on our image
material had indicated that measures based on co-occurrence
matrices computed from a small neighbourhood provide
neural networks with a high discriminatory power [37].
Define the co-occurrence matrix M(l) as

mi,j = r(f(p) = i,f(q) = j), d(p,q) = l (4)

with r(a,b) being the correlation between a and b, and
p = (x,y)T and q = (x′,y′)T coordinate pairs of pixels in the
quadratic window from which the correlation between pixels
is estimated. The function d(p,q) computes the Euclidean
distance between the two coordinate pairs; l specifies the
required distance. The parameter l is directly related to the
frequency spectra of the textures one wants to discriminate.
The best results on our image material was obtained with
the distance l set to 1 [37].

One also needs to optimise the size of the window from
which M(l) is computed. On the one hand, the larger the
sample used to estimate the correlation measures in M(l),
the smaller is their variance. On the other hand, larger
windows are more likely to include different types of textures
which biases the correlation measures. In general, one has
to find the optimal trade-off between variance and bias
which is problem dependent. As the minimally required size
of the window depends on the frequency characteristics of
the textures, we computed two-dimensional auto correlation
functions (AKFs) from different Fourier transformed subim-
ages of soft tissue, healthy and pathologic bone. The major
difference between the AKFs of healthy and pathologic bone
is the relative magnitude of frequency components with
periods between 5 and 10 pixels. Moreover, preliminary
experiments in which textural features based on co-occur-
rence matrices were computed using various window sizes
confirmed that the four classes are best separated with
features computed from windows with sizes varying from
7 × 7 to 11 × 11 pixels [35]. Adding textural features com-
puted on coarser scales did not improve the segmentation
result.

We used four texture measures derived from the co-
occurrence matrix M(l) to characterise the local texture [36]:

Second angular moment (O4)

z = O
i

O
j

m2
i,j (5)

Inverse difference moment (O5)

i = O
i

O
j

1
1 + (i − j)2 mi,j (6)

Contrast (O6)

k = O
i

O
j

(i − j)2 mi,j (7)

and Entropy (O7)

e = O
i

O
j

mi,j ln(mi,j) (8)

The feature O4 – the second angular moment – is the
sum of squares of the correlation measures in the co-occur-
rence matrix. It can distinguish areas in which pixels with
a distance l are correlated, i.e. a systematic texture, from
areas where the pixels are randomly distributed, e.g. due to
white noise. The feature O5 – the inverse difference
moment – is a weighted sum of the correlation measures in
the matrix. Entries close to and on the diagonal obtain
high weights whereas entries with a large diagonal distance
in M are assigned small weights. The measure i can dis-
tinguish low frequent textures from textures in which pixels
(with a distance l) often have very different intensities.
Feature O6 – contrast – measures almost the opposite textu-
ral property of feature O5, although in the formula for k
diagonal entries are assigned the weight zero. Feature O7 –
entropy – measures the variation among the correlation
measures in the co-occurrence matrix. It is a measure for
the complexity of the texture.

The last feature O8(f(x,y)) is the intensity of pixel (x,y)
itself, i.e. the identity operation.

4. EXPERIMENTS

We tested our feature-based segmentation approach on radio-
graphs of different bone tumours including a ewing- and an
osteo-sarcoma. The input to the neural-net classifier is the
8-dimensional feature vector e(x,y), the output the 4-dimen-
sional vector z(x,y). The features unsharp masking and the
median filter had a window size of 7 × 7, the co-occurrence
matrices were estimated from 11 × 11 windows. Segmen-
tation is obtained by convolving the image with the neural
network. Each input vector e(x,y) is classified according to
the winner takes all rule:

class(z(x,y)) = Hj: ∀l ± j: z l(x,y) , zj(x,y)

[: else
(9)

with z(x,y) = h(e(x,y)). Figure 1 illustrates how the neural
network segments a radiograph based on the feature vector.

Fig. 1. Schematic representation of the segmentation approach. The
original image is transformed by a number of image operations.
These provide the classifier (MLP or SOM) with neighbourhood
information of the pixel that is to be classified.
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4.1. Correct Segmentation from Radiologist

We obtained a set of about 200 radiographs with focal bone
lesions from the department of radiology at the RWTH-
Aachen. In addition to this, we added a smaller set of
images with normal findings, i.e. reference images. The
radiographs were digitised with a Dupont laser scanner with
a depth of 10 bit and a maximum matrix size of 2048 × 1684.
For our experiments we have chosen a core set of 20
radiographs containing the most important types of bone
lesions. An experienced radiologist was asked to specify the
class membership of regions inside each radiographic image.
Based on the annotations, which were made on a transparent
folio, a digital mask was composed indicating the class
membership of the pixels in each of the 20 images. However,
in most of the radiographs the class membership of only a
subset of the pixels was known as, due to uncertainty of
the radiologist, not all segments were associated with a
specific class.

4.2. Experiment with Radiograph of Brown
Tumour

First, we tested our approach on a real radiograph with large
segments of healthy and pathologic bone. In this experiment,
we trained a neural network to segment the radiograph of
a brown tumour as specified by the annotations of the
radiologist. A training set was composed by choosing at
random 8000 vectors from the regions associated with a
specific class (about 3% of the image).

Different neural networks with 4–8 hidden nodes were
trained with the backpropagation algorithm for 25,000
cycles, learning rate = 0.0001, momentum = 0.5, off line
learning. A class label is assigned to each pixel according
to Eq. (9). The best results were obtained using the network
with six hidden nodes. When used to segment the areas of
which the correct class membership was known, this network
obtained a correctness of 0.9301. Figure 2 shows the radio-
graph (left), the annotation mask obtained from the radiol-

Fig. 2. Radiograph of knee with brown tumour (left). The middle image contains the mask as obtained from the expert radiologist. The grey
level of a pixel in the mask indicates its class membership. Black is background, dark grey is soft tissue, light grey is healthy bone and white
is pathologic bone. Part of the mask indicates pixels of which the class membership is unknown (darkest grey). The right image is the
segmentation result obtained with the neural network.

ogist (centre) and the obtained segmentation result (right).
In the mask image, darkest grey indicates the segment that
is not assigned to any class by the radiologist (unknown).

Segments with a low class-conditional correctness were
soft tissue, 0.8427, and pathologic bone, 0.9472 (see
Table 2). From this contingency table, we computed the
class-conditional bias measures given the true class label u
as defined in Egmont-Petersen et al [30]. We used the bias
term (Eq. (39) in Egmont-Petersen et al [30]) to indicate
whether class u is biased towards or away from class t(±u)
while taking the prior class distribution into account. The
bias analysis indicates that the class tissue is biased towards
the class pathologic bone (see Table 2). The two classes
healthy and pathologic bone are both biased towards tissue.
So pixels from the classes healthy and pathologic bone tend
to be misclassified as tissue. On the other hand, pixels truly
belonging to the class tissue are primarily misclassified as
healthy or pathologic bone.

4.3. Experiment with Radiograph of an
Osteosarcoma

In a second experiment, we wanted to estimate the discrimi-
native performance of our neural approach on a test image.

Table 2. Contingency table of the feed-forward neural net-
work used for segmenting the brown tumour image

True class label MLP

Backg. Tissue H. bone P. bone

Backg. 23411 0 0 0
Tissue 0 29513 7 3858
H. bone 0 2531 2784 0
P. bone 1 2979 13 69150

Total 23412 35023 2804 73008

Correctness 1.0000 0.8427 0.9929 0.9472
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Table 3. Contingency table of the feed-forward neural net-
work used for segmenting the osteo-sacroma image

True class label MLP

Backg. Tissue H. bone P. bone

Backg. 7382 0 0 0
Tissue 0 67173 1505 1
H. bone 0 937 21797 4617
P. bone 0 1080 1852 53483

Total 7382 69190 25154 58101

Correctness 1.0000 0.9708 0.8665 0.9205

When it is to be used in clinical practice, the neural network
should have a high probability of locating pathologic bone
while misclassifying as few pixels as possible that belong to
other classes. We chose four radiographs from among the
20 indicating different bone tumours. The radiologist was
asked to make an annotation mask for each radiograph. We
composed a training set consisting of 8000 pixels chosen by
random from three of the images. Solely pixels were included
of which the true class membership was known. Again,

Fig. 3. Radiograph of osteo-sarcoma of a 20 year old patient. From upper left to lower right: The radiograph, hand-drawn annotation mask
of the radiologist and visualisation of the activation of the output neurons for the four classes: background, soft tissue, healthy bone and
pathologically changed bone.

neural networks with 4–8 hidden nodes were trained with
the backpropagation algorithm for 25,000 cycles, learning
rate = 0.0001, momentum = 0.5, off line learning. A fourth
radiograph was used for testing purposes (see Fig. 3 (upper
left)). This radiograph shows an osteo-sarcoma, the bone
tumour with the highest incidence in Germany. When
tested on this image, the neural network that performed
best on the training set (six hidden nodes) resulted in a
correctness of 0.9375 which is comparable to the previous
experiment.

The performance of the neural network when applying
the winner takes all rule (Eq. (9)) is indicated in Table 3.
It is clear that healthy and pathologic bone most difficult
to discern. This is also seen in the last four images in
Fig. 3 (upper right and lower row), which show the output
activation of the neural network corresponding to each of
the four classes (background, tissue, healthy and pathologic
bone). These output images can be used to indicate areas
that might contain pathologic bone.

We also computed a ROC-curve for this test image (see
Fig. 4). The ROC-curve indicates the trade-off between true
and false positive (pathologic bone) pixels when varying a
threshold t. For each value of t, the fractions of true
positive and false positive pixels were computed according
to oj− max(oi) . t, i ± j, with j the index of the class
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Fig. 4. ROC-curve computed on the test image in Fig. 3. True positive rate indicates the fraction of correctly classified truly pathologic pixels
for a certain threshold value, the false positive rate indicates the fraction of pixels classified as pathologic bone but belonging to one of the
other three classes.

pathologic bone. Pixels that were not associated with any
class in the mask were not included in the computation.
The ROC-curve shows that it is possible to locate pathologic
bone while keeping the fraction of false positive pixels
very small.

The second experiment shows that the chosen features
are robust to variation introduced by using more or less
randomly chosen radiographs indicating bone tumours. It
also shows that only a relatively small set of training samples
is necessary to obtain a well performing neural-net classifier.

4.4. Experiment with Synthetic Radiograph

We wanted to test our algorithm on image material of
which the class label was known for all pixels with a high
degree of confidence. Moreover, the algorithm should be
capable of identifying pathologic bone in radiographs show-
ing different types of bone tumours. Therefore, we composed
a synthetic radiograph by ‘cutting’ rectangular regions
(subimages) in eight different radiographs inside areas anno-
tated by the radiologist [38]. The subimages were ‘pasted’
into an empty image (see Fig. 5 (left)). The two subimages
showing pathologic bone were taken from a ewing-sarcoma
and an osteo-sarcoma, the two bone tumours with the

highest incidence. The synthetic image contained 492 × 492
pixels, 256 intensities.

We composed a training set by choosing at random 8000
vectors (about 3% of the image). Each vector e(x,y) was
used as input to a neural-net classifier and a self-organising
feature map. A number of different feed-forward neural
networks were trained with the same settings as in the
previous experiments. Figure 5 contains the synthetic radio-
graph (left), the segmentation result from the neural network
(centre) and from the self-organising feature map (right).

The self-organising feature map was trained according
to a two-phased algorithm: self-organisation followed by
convergence as proposed by Kohonen [39]. During training,
a mapping is established from the n-dimensional feature
space onto the 2-dimensional grid S called the feature map
consisting of 20 × 30 = 600 nodes. After 10,000 cycles the
learning process was terminated and a class label assigned
to each node sa,b in the feature map. The most frequent
class label among the training vectors of which the Eucli-
dean distance to node sa,b is smaller than to any other node
in the map determines the class label of sa,b. Topological
nodes that did not obtain a class label were temporarily
assigned to the special class ‘unknown’. Subsequently, these
nodes sa,b were assigned the same class label as the input
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Fig. 5. Synthetic radiograph (left) and the segmentation results (MLP middle and SOM right). The numbers 1–4 represent the classes
background, soft tissue, healthy and pathologic bone. The grey level of a pixel in the central and right images indicates the class membership
as assigned by the classifier. Black is background (1), dark grey is soft tissue (2), light grey is healthy bone (3) and white is pathologic bone (4).

vector with the smallest Euclidean distance.
Also in this experiment, the best result was obtained with

a network with six hidden nodes. It obtained an overall
correctness of 0.8983 based on all pixels in the synthetic
image (see Table 4). Also in this image, tissue, pathologic
and, to a lesser extent, healthy bone are difficult to discern.
The class background is biased towards the two classes with
the darkest average intensity: tissue and pathologic bone.
The class tissue is biased towards the classes healthy and
pathologic bone which are again biased towards tissue.

The self-organising feature map resulted in a lower class-
conditional correctness on the class tissue as compared with
the feed-forward neural network, whereas pathologic bone
obtained a higher class-conditional correctness. In fact, the
difference between the number of pixels correctly classified
as tissue plus pathologic bone is about the same for the two
classifiers, 67,679 + 28,639 = 96,318 for the neural network
and 65,904 + 30,401 = 96,305 for the self-organised feature
map. Which of the two classifiers are chosen, the same
performance is obtained.

Table 4. Contingency tables of the feed-forward neural network and the self-organising feature map for the synthetic radiograph

True class label

MLP SOM

Backg. Tissue H. bone P. bone Backg. Tissue H. bone P. bone

Backg. 52955 1540 526 1188 52519 604 0 3
Tissue 10 67679 4979 2493 86 65904 5687 1736
H. bone 0 1210 68184 180 0 2374 68437 360
P. bone 0 8750 3731 28639 360 10297 3296 30401

Total 52965 79179 77420 32500 52965 79179 77420 32500

Correctness 0.9998 0.8548 0.8807 0.8812 0.9916 0.8323 0.8840 0.9354

4.5. Experiment with Reduced Feature Sets

The previous experiments showed that our segmentation
approach resulted in a good performance. However, we
have no knowledge of which features are important for
discriminating the four classes. The correlation matrix
(Table 5) was computed from the data in the synthetic
image. It shows that some of the features are highly depen-
dent.

We also computed the eigenvectors of the correlation
matrix. They reflect the relative variances of the principal
components of the feature distribution (a principal compo-
nent analysis is often used for feature extraction). Figure 6
shows the accumulated variance as a function of the number
of principal components. It illustrates that three components
explain 97% of the variation in the data set. However,
what we do not obtain from the correlation matrix and the
principal component analysis is information about which
features contribute most to the discriminative performance
of the classifier.
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Table 5. Correlation matrix of the eight features computed
from all pixels in the synthetic radiograph

O1 O2 O3 O4 O5 O6 O7 O8

1.00 0.98 0.98 0.40 0.73 −0.18 0.40 0.98
1.00 0.99 0.41 0.73 −0.21 0.41 1.00

1.00 0.41 0.74 −0.21 0.41 1.00
1.00 0.82 −0.08 0.91 0.41

1.00 −0.09 0.83 0.74
1.00 −0.13 −0.21

1.00 0.41
1.00

A method developed by Egmont-Petersen [40] (chapter
3) was used to identify features with a low discriminative
power. Subsequently, neural networks were trained with
reduced feature sets. The developed method ranks the n
features according to their relative discriminative power for
the classification of a vector e(x,y). The discriminative power
of a feature is defined as the probability that the vector
would obtain another class label if the feature would be
observed again while keeping the other feature values fixed.
For each vector in the training set, the relative importance
of each feature is determined by ranking the n features
according to their discriminative power and summing these
ranks per feature across all vectors in the training set.

Fig. 6. Curve showing the accumulated variance explained by an increasing number of principal components. The eigenvalues were computed
from the correlation matrix (Table 5).

We used a special test set consisting of 996 vectors for
feature assessment. Thirty neural networks, each with six
hidden nodes but a unique initial weight configuration, were
trained with 8000 vectors from the synthetic radiograph.
After training, the eight features were ranked according to
their discriminative power. The four features with the lowest
overall discriminative power – the original image, second
angular moment, contrast and histogram equalisation – were
removed from the training and test sets. Subsequently, 30
new networks with six hidden nodes were trained and
the performance computed on the test set. Again, the
discriminative power of the four features was computed, the
least important feature – median – was removed and 30 new
neural networks were trained. Finally, the inverse difference
moment was removed and 30 new neural networks were
trained.

The performance of the 30 neural networks based on all
eight features was on the test set 0.891 (±0.028). The results
from the feature assessment in Table 6, indicate that some
features have a higher discriminative power than others.
When the four features with the smallest discriminative
power were removed (rank 5–8) and 30 new neural networks
were trained, the performance slightly increased 0.903
(±0.004), a phenomenon known as peaking. Note that the
average correctness measures obtained from the networks
based on four and eight features are not significantly
different. When the feature Median was removed and 30
new networks were trained, a performance of 0.890 (±0.007)
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Table 6. The ranks of the features are averaged over 30
neural networks. The first eight rows contain the average
ranks of all features for each of the four classes and the
average overall rank computed while taking into account the
prior class distribution. A low rank is associated with an
important feature. The next four rows contain similar ranks
for the 30 networks trained with four features, the last three
rows contain the ranks for the networks trained with 3
features. The last column indicates the rank assigned to
each feature

Avg. rank Backg. Tissue H. Pat. Overall Rank
bone bone

Hist. 4.50 4.68 4.51 4.78 4.61 5
Ush. 4.50 3.69 4.48 3.30 4.02 2
Med. 4.50 3.74 4.48 2.98 3.99 1
Sam. 4.50 5.13 4.52 5.07 4.82 7
Idm. 4.50 4.70 4.50 4.56 4.58 4
Cont. 4.50 4.64 4.50 5.78 4.75 6
Entr. 4.50 4.13 4.49 3.99 4.28 3
Orig. 4.50 5.30 4.53 5.54 4.95 8

Ush. 2.50 2.46 2.49 3.01 2.58 3
Med. 2.50 2.50 2.49 2.99 2.59 4
Idm. 2.50 2.67 2.52 2.06 2.48 2
Entr. 2.50 2.37 2.50 1.93 2.35 1

Ush. 2.00 1.77 1.98 2.24 3.92 2
Idm. 2.00 2.28 2.02 1.96 4.18 3
Entr. 2.00 1.95 2.00 1.79 3.89 1

was obtained. Reducing the feature set further led to a
significant drop in performance, 0.858 (±0.029). The graph
in Fig. 7 shows the average correctness of the neural net-
works as a function of the number of features.

The results in Table 6 show that when one or more
features are removed, the remaining features do not keep
the same mutual rank. This phenomenon is caused by
dependencies between the features and can be observed also
for the Bayes classifier [31]. With respect to the segmentation
task, the three most important features are unsharp masking
which accentuates the trabecula structure, the inverse differ-
ence moment which distinguishes low from high frequent
textures and entropy which measures the complexity of the
texture. Note that, according to the principal component
analysis, three components could explain 97% of the vari-
ation in the feature set.

5. DISCUSSION

We have developed a feature-based approach for segmen-
tation of radiographs using a neural network and a self-
organising feature map as classifiers. Between 90% and 95%
of the pixels are assigned to the correct segments. The
performance analysis indicates that especially soft tissue and
pathologic bone are difficult to discern. This is partly due
to the fact that these two segments have almost the same

average intensity. The left and right subimages of segment
4 in the synthetic radiograph (Fig. 5, left) show that the
appearance of pathologic bone varies much between radio-
graphs. The segmentation results of both classifiers indicate
that the right subimage is difficult to segment correctly
because of its inhomogeneous texture. This problem could
be remedied by grouping neighbouring pixels into the same
segment. However, this might not improve the performance
of the segmentation approach. One could also analyse the
textures on more scales, e.g. by varying the parameter l that
specifies the distance between pixels for which the corre-
lation measures in the co-occurrence matrix are computed.
This issue is left for further research. A multi-scale wavelet
approach has shown interesting results on our image material
[38], although the performance is poorer than that obtained
with the features presented here.

In the synthetic image, edges occur which are not present
in the original image material. These pixels could have been
removed from the training set and their class membership
considered unknown.

Our gold standard consists of annotations made by a
radiologist who is specialised in diagnosing focal bone
lesions. Because a high degree of experience is needed in
this field, different (specialised) radiologists may disagree
with respect to which parts of a radiograph indicate tissue,
healthy and pathologic bone. We expect a certain inter-
observer variation because a radiograph is a projection
which, by virtue of the overlapping structures, remains diffi-
cult to analyse. The next step in our research is to initiate
a larger study in which both the inter-observer variability
is assessed and where the different types of focal bone lesions
are being analysed by our algorithm with incidences that
coincide with those of a nonspecialised clinic.

Another reason to expect a certain inter-observer varia-
bility is that the image modality used is not the optimal
one for characterising tissue, which can better be investi-
gated using MR-imaging. At the Leiden University Medical
Centre, which is the Dutch centre for treating bone tumours,
dynamic MR-imaging with the contrast medium Gadolinium
is used to determine the size and malignancy of bone
tumours. However, patients always present with a radiograph
made in a peripheral hospital. Radiography is a relatively
inexpensive technology that is available in almost every
hospital in Europe and Northern America.

6. CONCLUSION

We have presented an approach for screening radiographic
images of focal bone lesions for pathologic changes indicat-
ing bone tumour. A neural network and a self-organising
feature map are used to classify individual pixels based on a
feature vector. The feed-forward neural network was chosen
because it generally results in low error rates, also when
the features are not normally distributed and because the
application of a neural network requires little computation.
The features we used characterise different aspects of the
texture in a small neighbourhood of a pixel. An analysis of
the eight features indicates that the presence of edges and
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Fig. 7. Curve showing the average correctness and the confidence intervals (a = 0.01) among the 30 neural networks when reducing the
number of features.

transitions, the complexity of the texture as well as the
amount of high frequencies in the texture are the main
features discriminating (soft) tissue from pathologic bone,
the two classes most likely to be confused. Our experiments
indicate the feasibility of using a feature-based neural net-
work for screening radiographic images for pathologic bone
changes. However, more research is needed to ensure that
the different appearances of pathologic bone are reliably
recognised.
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